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Abstract

For much of human history, science has sought to explain the world we live in by understanding causal
relationships. The development of causal inference algorithms has opened an avenue to expedite this
process. Fujitsu Causal Discovery is an Al tool based on the DirectLINGAM algorithm which generates
causal graphs from a multivariate table of data. In this project, we improve the discoverability of Fujitsu
Causal Discovery by evaluating the tool’s reliability under various conditions and creating systems to
detect those conditions. We also develop a user-friendly interface, based on our results, to provide
feedback on data quality and potential avenues for improvement.

August 7, 2025
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First, follow the rules.
Then, break the rules.
Finally, transcend the rules.

—THE PATH TO MASTERY IN JAPANESE ARTS

“The road to wisdom? — Well, it’s plain and simple to express:
Err and err and err again but less and less and less.”

—PIET HEIN
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1 Introduction

With computational tools widely available, data analysis has become a streamlined process, enabling the
general public to analyze virtually any dataset in record time. However, to truly understand our data, it is
necessary to not only identify the correlation between two variables, but also the causation. Previously, causal
relationships have been found through experiments, but these are often impractical or unethical. For example,
longitudinal studies of diseases can take several decades to produce results. Fujitsu Causal Discovery Al can
instead find these relationships using Direct LINGAM, an algorithm designed to find causal relationships in
data. We propose enhancements to the discoverability of this causal discovery tool by providing a measure of
data quality. We define discoverability as the ability to find previously unknown reliable causal relationships,
or lack thereof, in correlational data. Reliability can be measured by the statistical likelihood that a suggested
relationship holds true. These enhancements will quantify the reliability of Fujitsu Causal Discovery Al results
in a way that is currently lacking. We believe there is a difference between a possible causal relationship and
a true causal relationship. By providing this measure of reliability we aim to certify the veracity of results,
enhancing the ability to discover true relationships.

This is significant because misinterpretation of data patterns can result in flawed policy decisions and
inefficient allocation of resources. Correlation alone cannot tell us what will happen if we change something
in the system, but causation can. In fields such as health, education, environmental science, and crime,
understanding cause and effect is important in the design of effective solutions and in the mitigation of
misinformation. By developing robust methods to distinguish true causal relationships from mere correlations,
we can make informed and impactful decisions while achieving a more scientifically literate society.

There are two key questions to consider when uncovering new causal relationships without access to
conclusive experimentation: can we find convincing causal insights from just observational data? This was
the topic of the 2024 G-RIPS Fujitsu project [1]. Furthermore, how do we evaluate the quality of these
results? This process is always affected by real-world constraints, such as biased or incomplete data, which
limit the accuracy of causal inferences. This prompts the need for robust evaluation metrics and bench-
marks. We address this need by combining two central ideas. One, evaluate adherence to the assumptions
of DirectLINGAM for an arbitrary dataset. Two, analyze the effects of violating these assumptions on the
accuracy of data with known ground truths. Combine these results into a single score representing reliability
of Direct LINGAM predictions.

1.1 Background

DirectLINGAM (Direct Linear Non-Gaussian Acyclic Model) is a causal discovery algorithm that recovers
the structure of a causal graph from observational data [10]. This algorithm operates on the principle that,
if a variable causes other variables, when applying Gaussian noise to the ‘effect’ variable, we will be able to
recover the original data. Or, at least more closely than if we had applied noise to the ‘cause’.

The main idea of DirectLINGAM is to identify the most independent variable (the root cause) in a
dataset. This is done by iteratively searching for a variable that cannot be expressed linearly by any of
the other variables. Once the most independent variable is found, its effect is removed from the remaining
variables. This process is repeated to identify the next variable in the causal order until the complete ordering
is determined.

Then, DirectLINGAM performs linear regression on each variable with every variable that comes after it,
according to the causal ordering, to determine direct causal effects. An adjacency matrix of this causal graph
is produced based on the presence of direct causal effects between variables in the dataset. More details can
be found in section A.1.

It has been proven that if a dataset meets the following assumptions, then Direct LINGAM is guaranteed
to converge to the correct solution.

e Linearity: Each variable is a linear combination of its cause(s) and an independent noise variable.

e Non-Gaussianity: Each noise term of variables in a causal relationship is non-Gaussian and statistically
independent of the others.

e Non-confoundedness: All causes of the variables are included in the dataset.
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e Acyclicity: There are no feedback loops or reciprocal causal relationships in the causal graph of the
data.

e Infinite data: The data is infinite, and therefore sufficient to identify causal relationships within the
data.

1.2 Project overview

We quantify the reliability of DirectLINGAM results for any observational dataset. To do this, we measure
the impact of violating DirectLINGAM assumptions on the accuracy of results using generated data. Then,
we develop methods for detecting these violations in an arbitrary dataset, and validate these methods with
the aforementioned generated data. These results then inform our measure of reliability on DirectLINGAM
results for any dataset. This reliability score is how we propose to enhance discoverability.

To accomplish this, we do the following. First, section 2 is a preprocessing step, mainly for the ease
of the user. Next, we investigate the severity of DirectLINGAM assumption violations in section 3 using
flawed data and various accuracy metrics. Then we predict those accuracy metrics with a linear model, using
the violations of the datasets as the predictors. Following this, we develop original methods to detect these
violations in an arbitrary dataset in 4. Combining all previous steps, we formalize a measure of reliability in
section 5. Last, we extend this work, in section 7.6, to a wider user base by developing an interface.

2 Data preparation

The causal discovery tool requires three input files to run: a clean .csv file that contains the dataset, a
.txt file that contains a list of the numerical variables of the dataset, and a .JSON file that contains a list of
all variables, sorted by variable type. The clean dataset must have an index column, headers, and a binarized
target variable, which is a copy of any one variable, but binarized. We create an automated pipeline to
generate the required files from a raw .csv file, see figure 1. This includes the creation of a clean version of
the data. If it does not contain headers, the user is asked to name the columns in the dataset. This tool also
requires a target variable to begin the binarizer process, so the user is prompted to choose a target variable
and define its cutoff value. For categorical variables, the user selects one of the categories as the positive
class. For numerical variables, the user specifies a threshold to binarize the variable. The binarized target
variable is not used in our project, but is necessary to express the full functionality of the tool.

The information from all user inputs is saved, and if the same .csv file is used, then users have the
choice to use previous configurations or to overwrite them with new information. This preprocessing pipeline
ensures that the user only needs to provide information once per dataset which improves efficiency. It also
ensures that the Fujitsu Causal Discovery tool receives correctly formatted input. One last addition is the
automation of all Fujitsu Conditional Causal Discovery code. More details on this can be found here: A.2.

fixed acidity wiroats
v numeric: [] 11 items
0 7.4 9: "fixed acidity"
1 78 1: "volatile acidity" fixed acidity
2: "citric acid” volatile acidity
2 1.8 3: "residual sugar" citric acid
3 11.2 4: "chlorides” residual sugar
5: "free sulfur dioxide" chlorides
6: tcta].. sulfur dioxide free sulfur dioxide
quality quality_bin Zrifidensity total sulfur dioxide
8: "pH" .
5 0 P density
9: "sulphates"” H
5 0 10: "alcohol" P
i e sulphates
5 0 categorical: [] o items 1ohal
6 1 binary: [] © items HLCO

Figure 1: Example data preparation files
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Figure 2: Ground truth graph generated by causally

3 Determining severity of assumption violations

In this section, we investigate the repercussions of violating assumptions of DirectLINGAM. To do so, we
generate data that intentionally violate these assumptions to varying degrees. Then, we use Direct LINGAM
to infer their causal structures and evaluate the accuracy of the predictions. We analyze these accuracy scores
to determine the effects of violating different DirectLINGAM assumptions.

3.1 Data generation

To evaluate causal discovery using DirectLINGAM under assumption violations, we generate datasets
with ground truth causal structures that explicitly violate Direct LINGAM assumptions. First, to generate
acyclic datasets, we use the Python package causally [6]. We begin by generating a ground truth adjacency
matrix that represents the causal relationship between variables.

Using causally, we call causal mechanisms to simulate linear and nonlinear relationships between
causally-related variables. This process also applies Gaussian or uniform noise, denote this €. For exam-
ple, consider the variable x1, randomly initialized within a preset range. Then, for x; and x5 related linearly
with slope a, we calculate x2 = az; +€. The nonlinear model uses a neural network with one hidden layer. We
can represent transformations to and from the hidden layer with adjacency matrices, say A; and As. Then,
T = AQ(All’l) + €.

To introduce latent confounders we expand the ground truth matrix with additional nodes to the dataset.
This introduces hidden common causes, i.e. unobserved variables that have an impact on the observed data,
without explicitly revealing them to the discovery algorithms.

To generate cyclic datasets, we bypass causally and manually construct cyclic adjacency matrices by
injecting 2-cycles. See figure 2. We use the same causal mechanisms as causally to generate linear and
nonlinear data. We introduce confounders to the data in the same way, as well. For data that comes from
nodes in 2-cycles, we allow data to propagate through multiple time steps, which simulate feedback loops.
We do this by overwriting a randomly selected proportion of rows for four time steps, each step going from
one variable to the other. We only consider 2-cycles because the complexity of creating cycles of length 3+,
and the difficulties of detecting these cycles in data put this option beyond the scope of our project. Once
the 2-cycle relationships were generated, the rest of the dataset was produced as normal.

We generate synthetic datasets by combining different configurations as shown in the chart below (figure
3). For each unique combination of these settings, we used 20 different seeds for a diverse set of data for
analysis. This results in a total of 3,840 datasets. The elements under (Rows) are column multipliers, that
is, for 2 from (Cols) and 100 from (Rows), there would be 2 columns and 200 rows in the dataset. Thus, that
number of rows are added to the dataset for each addition of a column. Additionally, all files necessary for
DirectLINGAM and post-processing analysis are generated. See figure 4.
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(Cols) (Rows) . . . st Tgs .
9 10 [ (Linearity) :| (Noise distribution) ] [ (Confounding) ] (Cycles) ]
3 X 100 x Linear x Uniform x Confounded x 2-cycle
4 1000 Nonlinear Gaussian Not confounded Acyclic
10000

Figure 3: Configurations for data generation

dataset1049.cav ah

metadatal049.json =&

numerical_variables1049.txt =%

aw

matrix1049.csv =

dataset1049_infojson =

Figure 4: Dataset 1049 and associated files

3.2 Accuracy testing

After generating datasets that incorporate various violations of the Direct LINGAM assumptions, we aim
to evaluate how these violations affect the algorithm’s performance. Specifically, we want to quantify the
extent to which each type of violation degrades the accuracy of the recovered causal structure.

We consider three accuracy measures which are commonly used in causal discovery: the Fl-score, Struc-
tural Hamming Distance, and Frobenius norm [13]. We also develop a modification to the F1-score specialized
to our context. We use the F1 score because of its performance under sensitivity analysis. Details can be
found here: A.6.

The Fl-score is a measure of predictive performance. It is given by

TP

Fl=
TP+05(FP+FN)

where
e TP: True positive, when the algorithm correctly predicts an edge.
e FP: False positive, when the algorithm predicts an edge when there isn’t one.
e FN: False negative, when the algorithm does not predict an edge when there is supposed to be one.

The Fl-score lies in the range [0, 1], where a score of 1 indicates a perfect prediction, while a score of 0
indicates that Direct LINGAM did not predict any edges correctly. However, the typical Fl-score does not
consider edge weights. Thus, we create a modified F1-score, where edge weights near 0 are counted as 0,
small differences between predicted edge weight and the actual edge weight is counted as a true positive, and
differences in sign (+/-) are observed. Out modified F1-score is given by:

TP

F1=
TP+05(FP+IFP+FN+IFN+I+ME)

where



Page 7 of 24

G-RIPS Sendai 2025, Discoverability

Dataset Name | Confounders | Cycles | Seed | F1 | Noise Type | Linearity
dataset1 1 1 0 0.60 0 1
dataset2 1 0 0 0.20 0 1
dataset8339 0 1 19 0.05 1 0
dataset8340 0 0 19 0.29 1 0

Table 1: Example dataset used for the model predicting F1

IFP: Inverse false positive, where the algorithm predicts a false positive, but with the opposite sign
(+/-)-
e [FN: Inverse false negative, where the algorithm predicts a false negative, but with the opposite sign

(+/-)-

e I: Inverse, where the algorithm correctly predicts the existence of an edge, but the edge weights have
an opposite signs (+/-).

e ME: Magnitude error, where the algorithm correctly predicts the existence of an edge, but the magni-
tudes of the edge weights are much different.

This modified F1-score gives us a more detailed depiction of the algorithm’s prediction performance. We
not only return the score, but also the number of such cases, which gives us more insight into how different
LINGAM violations affect prediction performance. Similar to the Fl-score, the modified F1-score also lies in
the range [0, 1], where a score of 1 indicates a perfect prediction, while a score of 0 indicates the opposite.
Pseudocode: A.3

The following two metrics measure the distance between the ground truth adjacency matrix and the
predicted adjacency matrix from DirectLINGAM. First, we consider Structural Hamming Distance (SHD)
[12] as an accuracy test. SHD is a metric used to quantify the distance between two graphs by the difference
of their adjacency matrices. For two adjacency matrices A and B, their SHD is given by

n n
du(A,B) =3 ) laij - bigl.
i=1j=1
A lower SHD indicates better performance from the predictive algorithm, and vice versa.
We also consider the Frobenius norm as an accuracy measure. This is defined as the square root of the
sum of the absolute squares of its elements. To find the distance between two matrices, A € R™*™ and
B e R™"™ we calculate

m n
A= Blr =12 X lai; = bil*.
i=1j=1
A lower Frobenius norm indicates a smaller difference between the predicted matrix and the true matrix,
which means a more accurate prediction.

3.3 Sensitivity analysis

We consider a dataset where each observation is a dataset and its assumption violations, or lack thereof,
and its accuracy under DirectLINGAM. Table 1 shows an example dataset. We fit a linear model using
cyclicity, Gaussianity, and nonlinearity as predictors. To predict the F1 score, we calculate the following
linear model:

F'1 = .3141(acyclic) + .2552(non-Gaussian) + .1602(linear),

where the p-values are 5.2613e¢ 24, 2.4403¢ 1% and 5.6562¢72, respectively, with an R? value of 0.649.
See Appendix A.8 for details on this calculation. Figure 5 visualizes these coefficients. The existence of
assumption violations follows this rule:

(1)

{0 : violates assumption

1 : does not violate assumption
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Figure 5: Coefficients for the linear model predicting F1 score

While the coefficients tell us how much the variables contribute to the overall score, we also care about
the significance values. Each p-value comes from a statistical test where the null-hypothesis assumes that
the variable is not in the model. If the model with the variable in it is a significant improvement, that
would mean a low p-value below a certain threshold, you would reject the null hypothesis that the model
does not have that variable. We choose a threshold of 0.05 without loss of generality. Because each variable
has a p-value less than 0.05, this tells us that these relationships are unlikely to have occurred by chance
and individually they all significantly contribute to predicting the dependent variable (F1). Thus, all of our
variables are meaningful in predicting the F1 score. Because we are predicting F1 score as the measure for
reliability, a score of 1 is ideal.

Note the absence of confounders as a predictor. Unfortunately, the coefficient value for the presence of
confounders is the opposite sign of what we would expect. When we generate data in the ‘vanilla’ case,
meaning the data has no other Direct LINGAM violations, confounders contribute in the expected way. This
implies that the problem might come from generating confounded data in a specific case of another variable
not being vanilla. More research is needed here. There are additional reasons for this removal mentioned in
section 4.3.

4 Detecting assumption violations

Given that we know the impact of DirectLINGAM assumption violations on accuracy, we now aim to
detect these violations in an arbitrary dataset. Then, we will know the expected accuracy, i.e., the reliability
of results, for any dataset. The following are our methods for finding violations of linearity, non-Gaussianity,
non-confoundedness, acyclicity, and infinite data. There are various parameters associated with each of these
tests, which are tuned. Hyperparameter tuning results are located in the appendix, section A.5. Given these
optimal parameters, we evaluate success rate on the generated data for each method. All of these methods
additionally return the afflicted variables, which may be an avenue for graph generation in the future. This
means either removing variables, adding relationships, or looking at specific cut points for conditional causal
discovery depending on the context. These suggestions will bring us closer to the true causal graph, thus
enhancing discoverability.

4.1 Nonlinearity

The linearity requirement of DirectLINGAM indicates that when variables are related, they must be
so in a linear manner. However, unrelated variables might show linear or nonlinear relationships as well.
It is impossible to know a priori which relationships are supposed to be linear, and which do not matter.
To mitigate this, we consider particular cases ‘unrelated’. With this caveat acknowledged, we develop the
following model for detecting nonlinear relationships in a dataset.
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We use successive polynomial fitting via orthogonal polynomials, see A.4, to fit lines to every possible
pair of variables in a dataset. For example, choose variable x; as the independent variable and xo as the
dependent variable. Then fit a linear model, e.g., x5 = mzs + b, to this data. The null hypothesis is that the
constant model, x5 = b, explains the data. If the linear model is a statistically significant improvement over the
constant model, reject the null hypothesis. Otherwise, fail to reject. Repeat this process with with increasing
degree polynomials. Figure 6 shows an example of a linear fit versus a quadratic fit. Hyperparameter testing

—— Linear fit
41 —— Quadratic fit
2_
>_
0,
-2
0 5 10

X
Figure 6: Example of fitting a linear and quadratic line to data

shows that max degree = 9 and p-value threshold = 0.001 performs the best, with a success rate equaling
68.4%.

To classify a relationship as linear, the linear model must reject the null hypothesis, and all higher degree
polynomials must fail to reject. To classify a relationship as nonlinear, at least one degree 2 through degree 8
polynomial must reject, and the highest degree, i.e., degree 9, must fail to reject. All other cases are considered
unrelated. This is a clear limitation in our method because it cannot identify higher degree or non-polynomial
functional relationships. Our test would be improved by allowing for higher degree polynomials, but that is
computationally expensive.

This process is then repeated for all pairs of variables. If at least one pair is classified as nonlinear, the
dataset is nonlinear. Otherwise, it is linear. By including the ‘unrelated’ category, we try to account for the
fact that variables that are not related to each other might have nonlinear relationships. However, it is still
possible that datasets are incorrectly classified as having broken this linearity criterion by unrelated variables
being related in exactly a quadratic manner. This should be considered when extending this idea to higher
powers.

Another area of extension applies to conditional causal discovery. While fitting curves to any pair of
variables, recording either local maximums and minimums or points of highest curvature to serve as cut
points could emulate more linear data and thus provide more accurate Direct LINGAM results. The fitted
polynomials are in an orthogonalized basis and should be transformed back to the original space before
identifying cut points.

Linear | Nonlinear | Total

Predicted linear 1450 744 2194
Predicted nonlinear 470 1176 1646
Total 1920 1920 3840

Table 2: Results of linearity test on generated data
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4.2 Gaussianity

Recall the requirement of Direct LINGAM that requires causal relationships between variables to be related
with non-Gaussian noise. The difference between non-Gaussian noise and a non-Gaussian distribution should
be noted. Thus, we check, for every pair of variables, the distribution of the residuals that come from
predicting a linear relationship between them. This is determined using the Shapiro-Wilk test because
Razali and Yap [5] found it to be the best in all scenarios. Our parameter tuning reveals that this test
performs best when checking every set of variables regardless of the correlation coefficient, i.e., regardless of
whether there is a causal relationship or not.

An obvious limitation to this is that we fit a line to each pair of variables, so this test will not be as
accurate for nonlinear data. Using residuals to the fitted polynomial from the nonlinearity test instead of a
line could improve this metric.

Non-Gaussian | Gaussian | Total

Predicted non-Gaussian 1096 149 1295
Predicted Gaussian 824 1771 2595
Total 1920 1920 3840

Table 3: Results of Gaussianity test on generated data

4.3 Confoundedness

Unlike the other DirectLINGAM assumption violations, it does not matter if the pair of variables afflicted
are actually related. Instead, we care if confoundedness is present in the dataset as a whole. To detect
confoundedness, we consider the case where two variables, say x1 and xo, have a high correlation coefficient
but no link is found between them via DirectLINGAM. If no other variable causes both 1 and x5, then we
say there is +1 confounder. This is then repeated for every pair of variables. If this count is non-zero, the
dataset is classified as confounded.

It is apparent that this metric does not contribute in a meaningful way during sensitivity analysis, and
in addition to this, its best success rate on generated data is 48.6% correct. Hence, we remove this as a
predictor of reliability.

Although this test is not helpful within the scope of this project, we have ideas to improve it in future
work. The primary technique we might consider is called bootstrapping. Our current approach only gives us
one chance to see whether DirectLINGAM will find a relationship. The new approach would involve taking
overlapping subsets of the data so we can run DirectLINGAM multiple times for the same variables. Then
we can evaluate the proportion of time a particular relationship holds. This will give us more opportunities
to find confounders which we currently severely under predict as per table 4.

Not confounded | Confounded | Total

Predicted not confounded 1712 1799 3511
Predicted confounded 208 121 329
Total 1920 1920 3840

Table 4: Results of confoundedness test on generated data

4.4 Cyclicity

Recall that DirectLINGAM starts by assigning a hierarchy of variables which immediately eliminates the
possibility of finding cycles. To circumvent this, we can use prior knowledge. Our test for finding cycles starts
by running DirectLINGAM once for each variable where that variable is forced to be the most independent
in the hierarchy. We also run it once without prior knowledge to serve as a baseline. Next we count, of the
times a given relationship is allowed by the hierarchy, how often does it appear in the result. This ratio is
then compared to a threshold. If the ratios for both A causes B and B causes A are above the threshold for
a given pair of variables, then we say (A, B) is a cycle. More details are provided in section A.7.

10
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This test performs so poorly that its inverse may be useful. The lowest accuracy we achieved was
36.4% with the tendency to over-predict the existence of cycles. See table 5 for more details. Perhaps
the real explanation here is that on the data we generate with cycles, DirectLINGAM is just less likely to
find relationships than on the acyclic data. Unfortunately, our sensitivity analysis showed that cyclicity is
the most significant factor in Fl-score, so we would like to improve this test in future work. Similar to
confoundedness, bootstrapping may be a valuable technique here.

Acyclic | Cyclic | Total

Predicted acyclic 38 561 599
Predicted cyclic 1882 1359 | 3241
Total 1920 1920 | 3840

Table 5: Results of cyclicity test on generated data

4.5 Finite data

We investigate the metric of how much a dataset violates the infinite data assumption of Direct LINGAM.
Our research shows that the number of rows and the number of columns is insignificant in predicting any
accuracy metrics. However, the proportion of rows to columns was significant, but not significant enough to
include in our final model. We include these details for the reader, regardless. The ratio is

p number of columns

number of rows

which means a smaller number fits the assumption better, and vice versa.

5 Creating a dataset scoring metric

We combine all of this information to create a metric for reliability. We use ‘reliability’ and ‘predicted
accuracy’ synonymously, and variables refer to violations of DirectLINGAM. Using the coefficients from the
linear model, we plug in the information on insufficiencies in the data to predict accuracy. Recall the labels
for the existence of violations from equation 1.

Consider a dataset that is found to have the following DirectLINGAM assumption violations.

acyclic: 0
example dataset traits = { non-Gaussian: 1

linear: 0
The linear model that was found in section 3.3 with this input is:

R = .3141(acyclic) + .2552(non-Gaussian) + .1602(linear),
3141(0) +.2552(1) + .1602(0)
2552,

where R is the measure of reliability.

Observe that the highest possible score is 0.7295, so we normalize each score by this. Given there are
eight configurations for violating/non violating assumptions of DirectLINGAM, we choose the scoring metric
shown in table 6. With this scoring metric, the previous example now has a reliability score of .3498, i.e.,
an F. We can see that for any dataset, violating the assumptions in order of importance, while not violating
any others, leads to grades of A, B, C, etc. For examples of use, see Appendix 77.

A further application of this uses conditional linear models to find how much each variable individually
contributes. There are two routes possible for this. First, consider the metadata dataset with saved infor-
mation on datasets. An example of this is located here: Table 1. First, split up the metadata dataset into
two parts, one that satisfies the most significant condition and one that does not. Again, fit a linear model

11
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acyclic non-Gaussian linear reliability (normalized) grade
0 0 0 0.0000 F
0 0 1 0.2196 F
0 1 0 0.3498 F
0 1 1 0.5694 D
1 0 0 0.4306 F
1 0 1 0.6502 C
1 1 0 0.7804 B
1 1 1 1.0000 A

Table 6: Possible reliability scores and associated grades

to both of these. Do this process until for every configuration of variables, there is a smaller linear model to
predict accuracy. Then, we can see how well the remaining variable is able to predict the reliability score.
Alternatively, this hierarchy can be created from how confident we are on our metrics for detecting violations,
instead of significance.

6 Conclusion

We set out to enhance discoverability by uncovering the reliability of DirectLINGAM. This was achieved
by first generating large amounts of artificial data. These are datasets with known ground truth and known
adherence to or violations of DirectLINGAM assumptions. Then we assessed the output of DirectLINGAM
when run on these datasets. Separately we developed tests for finding violations of the DirectLINGAM
assumptions in arbitrary datasets. Finally, we put these results together to create a scoring metric. This
enhances discoverability by establishing a confidence level to support the varacity of DirectLINGAM results.

7 Future work

7.1 Previously mentioned

The following are areas in which our work could be extended that we have previously mentioned. Full details
are included in the text and cited here.

e 3.3 Correct the coefficient for confoundedness in the linear model predicting accuracy.

4 Graph modification to more accurately represent your data.

e 4.1 Include higher-power polynomials and other functions in nonlinearity detection.

5 Conditional linear models for finding specific violation contributions to the reliability metric.

7.6 Integrate our work with the user interface.

7.2 Literature review

Due to the nature of this project, we did not do extensive literature review. Most of our work was based
around Fujitsu Causal Discovery rather than the greater body of work concerning Direct LINGAM. We are
aware of other papers evaluating the performance of DirectLINGAM under various conditions [14, 8]. We
would like to compare our results with theirs. This may also help us gain insight into some of our concerns
about the data generation process mentioned above.

Further work exists comparing DirectLINGAM to other causal discovery algorithms [11, 7]. This work
could serve as a valuable starting point for our future direction 7.4 below.

12
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7.3 Conditions

As mentioned above, the inspiration for this project was Fujitsu Causal Discovery. This tool enhances
Direct LINGAM by allowing for conditional causal discovery. Each condition amounts to selecting a subset of
the input data before running DirectLINGAM. Our work should extend to this context in a straightforward
way. Once conditions are chosen we can run all of our violation tests on the appropriate subsets of data and
produce a corresponding reliability score for the resulting conditional causal graph.

7.4 Choosing an algorithm

This project focused on DirectLINGAM because that is the basis of Fujitsu Causal Discovery. But there
are dozens of other causal inference algorithms [3], including several variations on LINGAM [9] designed
around a similar goal. Each algorithm has its own assumptions, strengths, and weaknesses. Another future
direction for this project would be to repeat our process for many other algorithms. This way, after evaluating
a dataset, we can tell the user which algorithm is expected to give the best results based on the nature of
the data.

7.5 Machine learning

In section 3, we created datasets with known ground truth structures that explicitly violate Direct LINGAM
assumptions. We applied Direct LINGAM to each dataset and compared its output to the true causal graph.
This allows us to assess to what degree different types of assumption violations affect its predictive accuracy.

In principle, we would be able to use machine learning algorithms to identify patterns among an arbitrary
dataset based on the nature of its assumption violations. Given an arbitrary dataset, we could assess its
similarity to our generated datasets and their ground truth structures, and then infer the most likely ground
truth structure.

This would be helpful for datasets that violate Direct LINGAM assumptions, and would therefore produce
an inaccurate prediction. We would not rely solely on DirectLINGAM’s output, but by learning from past
cases where their true causal structure is already known.

Causal discovery itself is an interesting problem for machine learning. Since we have developed a process
for generating data with known ground truth, we could create arbitrarily large training sets. In this way, we
could train a model to generate causal graphs from on arbitrary datasets. The team members of the G-RIPS
Fujitsu group, 2025, have strong interest in studying this.

7.6 User experience and interface design
Our model provides the following workflow:
1. Upload CSV
2. Receive causal graph and reliability grade
3. Receive DirectLINGAM assumption violations
4. See variables that caused the violations

Users upload a .csv file of a dataset into the interface and the data is preprocessed, as in section 2.
The user then receives the causal graph that DirectLINGAM has inferred, together with the corresponding
reliability grade, according to table 6 in section 5. To help users understand the reliability grade, the interface
provides a list of DirectLINGAM assumption violations detected in the uploaded dataset. For each violation,
the user is provided with information on which variables are responsible.

7.6.1 Visualization and results presentation

Visualizations are developed using the Plotly and PyVis libraries, offering outputs suitable for academic,
business, or policy applications. Color schemes and visual hierarchy guide users through the interface, while
clear status indicators (e.g., success, warnings, and errors) enhance understanding.

The platform adapts language based on user type, such as researchers, business users, or students, and
includes contextual help for every step.

13



Page 14 of 24 G-RIPS Sendai 2025, Discoverability

7.6.2 Technical architecture

The system is built on a modular architecture. The frontend manages user interaction and visualization,
while the backend handles the computational logic using Python’s scientific stack.

Session tracking ensures continuity, allowing users to pause and resume work without data loss. Export
functionality supports various formats, facilitating professional report generation.

We also hope to include instructions on how to integrate our project and Fujitsu Causal Discovery Al
into this interface.

7.6.3 Summary

In summary, the platform will successfully bridge the gap between advanced statistical modeling and
practical usability. It will empower technical users to perform reliable causal analysis without requiring deep
expertise.
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A  Appendix

A.1 DirectLINGAM algorithm
The following is pseudo-code for the Direct LINGAM algorithm.

1. Initialize:

e z: a p-dimensional random vector
e [U: variable subscripts of x
e X: pxn data matrix of x’s

e K := @ (ordered list of variables)
2. Repeat until p — 1 subscripts are appended to K:

(a) Perform least squares regression of z; to x; Vie U N K (i # 7).
(b) Compute residual vectors rU) and residual data matrix RY) Vje U\ K

(¢) Find x,,: the most independent variable

Ty = arg min Trepner (255U N K)
jeUNK

SV )
where Thernet = Liev,iej MI(25,7;77).
M1 is a measure of mutual information.

(d) Append m to k.
3. Append remaining variable to end of K

4. Construct lower triangular matrix, B, estimating connection strengths, b;;, using covariance-based
regression. (LS or MLE)

A.2 Automated Fujitsu Causal Discovery

Previously, Fujitsu Causal Discovery was separated into three Jupyter notebooks. Each cell was run one
at a time and it was difficult to consolidate the output. Our new process initializes a class, figure 7, which
creates a folder based on a keyword that you input, and then creates an input and output folder in it. See
figure 8. This class takes in all parameters for steps for our reliability code as well as Fujitsu code. This
includes s-min, o-max, r-value, k, modes for binarizer, thresholds etc. Now, each step is a class function, so
they can be run independently from a single command. This also means that class variables are defined, like
the dataframe. i.e., the dataset and other parameters can be accessed anytime, and across different models
easily. This eliminates as much manual work as possible.

import packages M/ --- /Saved Models / winequality-
red_example /
model = Class(dataset)

Name - Last Modified
model.create_file_directory B input 2 hours ago
model.prepare_dataset
model.run_fujitsu_causal_discovery B8 output 7 days ago

Figure 7: Example of automated pipeline Figure 8: File structure example
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Algorithm 1 Modified F1-score

Initialize:
TP,TN,FP,IFP,FN,IFN,I, ME <0
€ < 0.5 x max (jmatrix1|, matrix2|)

0« 0.5xe

x1 < matrix1[i,j]

X9 <« matrix2[i, j]

if |Z‘1|/\|JZ‘2|< ¢ then
TN« TN+1
else if |z1|A|xa|> ¢ then
if |z1 — 29|< € then
TP<TP+1
else if |x1 — x2|> € then
if same sign then
ME <« ME +1
else if diff sign then
I<T+1
else if |z1]< 0 Alx2|> ¢ then
if |x1 — z9|< € then
TN« TN+1
else if |z — xo|> € then
if same sign then
FP< FP+1
else if diff sign then
IFP<IFP+1
else if |z1]|> 0 Alz2|< & then
if |21 — 29|< € then
TN «<TN+1
else if |x; — x2|> € then
if same sign then
FN «< FN+1
else if diff sign then
IFN < IFN +1

e TP (True Positive): Both matrices have strong, similarly signed edges.

e TN (True Negative): Both matrices have near-zero (insignificant) edges.

e FP (False Positive): Prediction shows a significant edge where none exists.

e IFP (Inverse False Positive): Prediction shows a reversed-sign edge that shouldn’t exist.

e FN (False Negative): Ground truth has a strong edge that was missed.

e IFN (Inverse False Negative): Ground truth edge exists but is predicted in the wrong direction.
e I (Inverse): Both have strong edges but in opposite directions and with large differences.

e ME (Magnitude Error): Both have edges with the same sign but vastly different magnitudes.

TP

Modified F1-score =
TP +0.5- (FP+IFP + FN +IFN + I+ ME)

17
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A.3 Modified Fl-score

We develop a modified Fl-score, to account for edge magnitude and direction, that was not considered
by the original Fl-score. Algorithm 1 shows pseudo-code for our modified F1-score algorithm.

A.4 Successive polynomial fitting

To detect nonlinearity, we do successive polynomial fitting using orthogonal polynomials. The following
is pseudo-code to find a polynomial of degree d where = and y have n observations. This was created by
Nicole Lacey with guidance from [2].

Initialize orthogonal basis for polynomial of degree d: ¢.

Transform x to the orthogonal basis.

2y = [¢1(2) ¢1(2) - da(2)]”

Find the polynomial coefficients in this space.

By=xby

Find the residual squared error. .
RSS = [|y — 245

Define a matrix, A, to test the null hypothesis that the leading coefficient is 0.
A=[0 - 0 1]
Find the coefficients under the null hypothesis.
Bry = Bo + AT(AAT) ™' (-AB,)
Find RSS under the null hypothesis.

RSS, = (y - 26B8s)" (y ~ 245)
Check if the model with the degree d term is a statistically significant improvement.

RS, ~RSS| |

RSS 4)

fstat =
Calculate the p-value from the f-stat and degrees of freedom of the model. If it is below the chosen threshold,
i.e., p = .01, reject the null hypothesis and thus accept the model with the added degree. Failing to reject
the null hypothesis is different from accepting it.

A.5 Hyperparameter tuning

The parameters we tune for each of the violation tests are as follows. For the nonlinearity test we vary the
p-value threshold and max polynomial degree. For the Gaussianity test we vary the correlation coefficient
threshold which determines whether we check the noise in a given relationship. For the confoundedness test
we vary the correlation coefficient threshold in the same way. And for the cyclicity test we vary the threshold

18
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for what proportion of causal relationships need to appear to count a cycle. For each parameter choice we
run the tests on all of our generated datasets and measure the percentage of successful guesses. The figures
below show the results of this process. From those results we choose a final parameter, and a further break
down of the accuracy at the chosen parameter can be found in section 3. In the case of nonlinearity the
results improve as we increase max degree, but run time also increases exponentially, so we do not test beyond
degree 9.

0.68 0.64
g g
C0.64 Co.58
0 0
n (9]
O] O]
O O
50.60 50.52
(V2] (V2]
03633 5 6 7 8 9 046651 00501 .05 1 5
Max degree p-value threshold (log)

Figure 9: Nonlinearity test with ‘p-value threshold’ Figure 10: Nonlinearity test with max degree = 5
= 0.001 vs. success rate vS. success rate

0.8

0.6

Success rate

0400 02 04 06 08

Threshold

Figure 11: Gaussianity test success rate vs. threshold

0.485

Success rate

047556 02 04 06 08

Threshold

Figure 12: Confoundedness test success rate vs. threshold
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Figure 13: Cyclicity test success rate vs. threshold

A.6 Choosing an accuracy score

We consider F1, modified F1, Structural Hamming Distance, and Frobenius norm as metrics for accuracy.
We find that fitting a linear model to predict F1 has an R? value of 0.649, while SHD and Frobenius norm are
0.166 and 0.121, respectively. See figure 14. This value shows us the extent to which the predictors—acyclicity,
non-Gaussianity, and linearity—are able to explain dependent variable. Because of SHD and the Frobenius
norm’s low R? values, we do not consider them for measures of reliability. Thus, we select predicted F1 score
as a measure for reliability. Additionally, the modified F'1 score was not explained well by the predictors.

o o
I o

o
(N}

R-Squared value

o
o

Structural Hamming Frobenius norm
Distance

Accuracy metric

Figure 14: R? values for accuracy metrics
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A.7 Cyeclicity Test

Algorithm 2 shows pseudo-code for our cycle finding test.

Algorithm 2 FindCycles

Initialize:

outputList, cyclesList « [ ]

for all col € columns of dataset do
hierarchy < [col] + [¢ | ¢ € columns of dataset, ¢ # col]
result « RUNDIRECTLINGAM (dataset, hierarchy)
outputList.append([col, result])

outputList.append (RUNDIRECTLINGAM (dataset))
for all a € columns of dataset do
for all b € columns of dataset do
Rlnum <~ Oa R]-den <0
R2num <~ 0; R2den <0
for all k € outputList do
if k[a][b] # 0 then
Rlnum e Rlnum +1
R]-dcn <~ R]-dcn +1
else if k[b][a] # 0 then
Rznum - R2num +1
RQden <« R2den +1
else
if k[0] # a then
R2den <~ R2den +1
if k[0] # b then

Rlden <~ Rlden +1

1num 2num

Rl < B po
lgen R2den

if min(R1, R2) > threshold then

cyclesList.append([a, b])

> Run without hierarchy for control

e outputList: List of adjacency matrices produced by Direct LINGAM.

e cyclesList: List of expected cycles.

e Rlyum: Number of times a causes b appears in a causal graph.

® Rlgen: Number of times a causes b was possible.
e R2,um: Number of times b causes a appears.
® R24en: Number of times b causes a was possible.

e threshold: Minimum ratio to count as a cycle.

A.8 Linear Model

This section provides a description of how to calculate a linear model for a generic dataset. Let predictor
variables z1,-,z, € R™?!, where X = [21-2,], and a dependent variable Y € R™*!. Then, observe the

desired model with the coefficient 5 = 31,---, Bp:

Y=XpB+e¢
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We wish to know the values of 5. Observe:

Y =X8
XTy =xTxp
(XTx)'xTy =p

Thus, we have found the coefficients, i.e., 3.

A.9 Examples

The following two datasets are from an online repository, cited here: [4]. Our first example is a two-
variable dataset, recording altitude versus temperature. This dataset received a score of F, or 43%, due to
its Gaussian noise and nonlinear relationships. We can see that these impacted the accuracy of the results
of Direct LINGAM. The resulting graph in Figure 15 shows that temperature causes altitude, when we know
that the opposite is true. Our reliability metric tells us not to trust the DirectLINGAM results, and indeed,
the results were not correct.

Altitude

.

-193.52

/

Temperature

Figure 15: DirectLINGAM prediction: altitude vs. temperature dataset

We can see, in a dataset investigating horsepower versus MPG (miles per gallon), that our reliability
metric tells us how true our results are. The predicted score is a B, or 78%, and the results align with what
we know to be true — that horsepower does cause MPG. We can expect reliable results because this dataset
only violated the nonlinearity condition. See Figure 16.

Horsepower

-0.16

N

MPG

Figure 16: DirectLINGAM prediction: horsepower vs. mpg dataset

Last, consider the canonical wine quality dataset. DirectLINGAM will output that ‘quality’ is a cause
of other variables, which we know is not true. If given a reliability score, users will then know that they
should, or should not, trust the results. This dataset received a score of 78%, or a B because it violated the
nonlinearity condition. So, we know that the results of this dataset are not perfect, and indeed our score
reflects that. These show that for any dataset we can find the necessary information to reasonably tell if
results are expected to be true i.e., the veracity of the results of DirectLINGAM.
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Figure 17: DirectLINGAM prediction: wine quality dataset

B Contributions

B.1 Jamin Kochman

Jamin’s primary role in this project was in code integration. Do to the secure nature of this project it
was difficult to directly collaborate on code. Early on Jamin worked with Nicole on automating the Fujitsu
process. From that point Jamin became the team member most familiar with the Fujitsu code, and integrated
the functions created by Nicole and Jia Hui into the final working project. Jamin was responsible for running
large scale data generation and testing after organizing the group’s code in a cohesive way. Furthermore, they
assisted in a consulting role on most aspects of the project framework and code debugging. They also used
their experience with LaTeX and rhetoric to streamline editing of all deliverables. Finally, they developed
the algorithm for cycle detection in a dataset and the code to implement it.

B.2 Nicole Lacey

Nicole contributed to this project as a team member, but also a project manager. We begin with her con-
tributions as a team member. Early on, she worked with Jamin to automate Fujitsu’s code. She contributed
file structure automation code from her personal research to help do this, and advised on the importance of
a class to hold all of the functions and variables. Then, when we needed to find accuracy metrics, Nicole
wrote python scripts to calculate F1 score and structural hamming distance. She also researched alternative
accuracy metrics, but did not find anything helpful. Nicole also devised a way to create cyclic data from a
cyclic adjacency matrix, which Jia Hui then implemented. For the “finding assumption violations in data”
part of our project, Nicole provided code from her graduate coursework to find nonlinearity in datasets, and
adapted it to our specific needs. She also created the method to find confoundedness in data, with input from
Jamin, after extensively researching possible alternatives and finding nothing concrete. She and Jamin also
developed the method to find Gaussian noise in data. Finally, she developed the linear model for predicting
the F1 score. Throughout the summer, she helped Jia Hui and Jamin debug various parts of the project and
significantly contributed to all deliverables.

As project manager, Nicole continuously compiled and submitted questions to the industry mentors, and
assigned tasks to members needing work or direction. She continuously checked in with team members to
minimize miscommunication and ensure understanding. She also consulted with the academic mentor in a
timely manner to address issues with team members, resulting in morning meetings that better addressed
our needs.
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B.3 Joseph Nyingi

At the beginning of the project, Joseph collaborated with Jia Hui to design and implement a data
automation codebase for the data processing pipeline. He contributed to the team’s literature review by
exploring metrics such as Structural Hamming Distance (SHD) for graph comparison, as well as conducting
preliminary research on nonlinearity tests, including polynomial fitting and the Ramsey RESET test. Joseph
also identified appropriate tests to see data comes from a Gaussian distribution. Later in the project,
he led the development of the user interface starting with wireframe design in Notion and moving to a
functional prototype using Streamlit to align with the team’s project goals. The resulting interface provided
a user-friendly, three-step workflow upload, analyze, and discover featuring an analysis dashboard with tabs
for detecting DirectLINGAM assumption violations, visualizing causal relationships, and a Discoverability
section that surfaced novel patterns and assessed reliability dynamically.

B.4 Jia Hui Sim

Jia Hui contributed to the project in terms of theoretical research and software implementation. An initial
literature review was conducted on the assumptions underlying the DirectLiINGAM causal discovery algo-
rithm, with particular attention paid to common assumption violations and how they may affect algorithmic
performance. In addition, she explored various accuracy metrics used in the causal inference literature.

Jia Hui worked closely with Joseph at the beginning of the project to design and implement a codebase
that automated the data processing pipeline. This greatly streamlined the experimental workflow and allowed
the team to easily run experiments across multiple datasets with minimal manual intervention.

Another contribution was developing a Python-based data generation loop using the causally package.
This script automated the creation of synthetic causal graphs and corresponding datasets. Jia Hui modified
this generation loop to accommodate different combinations of graphs that violated the assumptions of
DirectLINGAM. In collaboration with Nicole, she helped debug issues that arose in generating confounded
datasets and co-developed a method for injecting cycles into the generated graphs, since the causally package
does not support cyclic structures. She worked with generating datasets for Jamin to use for the testing of
Fujitsu Causal Discovery.

Regarding evaluation, Jia Hui contributed to metric design by working with the team to develop a modified
F1-score tailored to causal discovery tasks. She wrote the corresponding implementation in Python to enable
its use in empirical evaluations. Additionally, she reviewed literature on Network Portrait Divergence as an
alternative accuracy metric and implemented preliminary tests, although this method was not ultimately
used in the final analysis.

Finally, Jia Hui assisted with Nicole’s implementation for evaluating linearity and nonlinearity in arbitrary
datasets.
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